AA214/AE296 — 1996 — Solutions for Problem Set 6

1. The trapezoidal method u,41 = u,+ %h(u;H_l +u!,) is used to solve the ODE «’ = Au+a numerically.

(a)

(b)

(c)

What is the resulting OAE ?

ANSWER: Applying the representative ODE «’ = Au + a(Note this is the case with y = 0
from the lectures) to the trapezoidal method gives and collecting terms:

1 1
(1 — §hA)‘Un+1 = (1 + §hA)Un + ha

What is its exact numerical solution ?

ANSWER: You can get this a number of ways. One can apply the scheme recursively and
find the general relation or use the P(F),Q(F) analysis from the notes. In any case the exact

solution is .
1+ %h/\ a
Up= | ——| — —
1- %h/\ A

How does the exact steady state solution of the OAE compare with the exact steady state
solution of the ODE (Hint:The exact SS solution is u(t — oc) = —%)?

ANSWER: In this case the steady state OAE solution is the same as the ODE solution.

2. Consider the ODE

with

(a)

du
= — =JA f
u 7 [A]lu +
-10 -0.1 -0.1 -1
[A] = 1 -1 1| . f=| o
10 1 -1 0

Find the eigenvalues of [A] using Matlab. What is the long time Steady State (SS) solution
u? How would the ODE solution behave in time? (Hint: Remember the e* form of ODE
solutions.)

ANSWER: Matlab gives the eigenvalues as Ay = —9.8888, Ay = —0.1112, and A3 = —2.0000.
which means the long terms transients go to zero as ¢ — oc. The steady-state solution is

0
—[A"f =] -5
-5
1
Write a Matlab code to integrate from the initial condition u(0) = | 1 | from time ¢ = 0 for
1
the three time advance schemes (h = At)
i. Upy1 = U + h(u'), the Euler Explicit Scheme
il. Up41 = up + A(u')p41 the Euler Implicit Scheme
1il. Upyl = Uy +h(u)y 7 Uppr = 'un-l-%h ((u’)n+;_ + (u’)n) the Predictor-Corrector Scheme

In all three cases use h = 0.1 for 1000 time steps, h = 0.2 for 500 time steps, h = 0.4 for 250
time steps and & = 1.0 for 100 time steps. Compare the computed SS solution with the exact
SS solution.

ANSWER: You should find that all the methods are stable and converge well to the steady-
state solution for A = 0.1,0.2, and that only the implicit scheme is stable and convergent for
h = 0.4,1.0. I've provided my Matlab code at the end of the answer sheet for comparison.



(c)

Could you have predicted the behavior of the previous problem? In class we developed the
o — A relations for these methods.
i. For the Euler Explicit Scheme: o = (14 h\).
ii. For the Euler Implicit Scheme: o = 1/(1 — h\).
iii. For the Predictor-Corrector Scheme: o = (1 4+ hA + %(hA)Q).
The stability condition is |o| < 1.0. For the Euler Explicit scheme what is the predicted

stability limit on A and is it confirmed by your Matlab code? (Hint: Try running just below
and above the limit, also use the eigenvalues from 2(a) in the stability check).

ANSWER: The stability condition is that
lo| = |14+ hA| < 1.0
which leads to the inequality equation
—-1<14+h2<1

We have the trivial solution AA < 0 which is automatically satisfied since A > 0 and all
the A < 0. The nontrivial solution is —2 < hX which if we check all three A is satisfied is

h < ﬁ = 0.202265, you can check this by running A = 0.202 and A = 0.203 for 1000 time

steps.

3. For the “backward differentiation” scheme given by

(a)

1
Upt1 = 3 [4un — Up_1 + Qhu;H]

The A — o relation may be derived in the following manner. Applying the time-marching
scheme to a representative equation of the form

du
dt

= \u+ ae”’
results in the following equation

Upy1 = % {4un — Up_1 + 2R (z\un_H + aeth (”‘H))]

and simple algebraic manipulation of the equation yields
(3=2Ah) upy1 — 4up + up—q = 2haeth (n+1)
and on introducing the difference operator, F. the equation may be written as

[(3=2\R) E =4+ B u, = [2hE] ae™"

The term in square brackets on the LHS is referred to as the characteristic polynomial, P(F),
and the term in square brackets on the RHS is referred to as the particular polynomial, Q(F).

The A — o relation is given by
(3—2X\h)o? —4o0+1=0

Solving for the roots of the characteristic polynomial gives

U_Qi\/1—|-2/\h
 3-2)\h



(c) Using the power series expansion identity !

S (2R = 3]

the square root in the numerator of the solution for ¢ can be expanded in powers of Ak

o L (12k = 3]
VIToM = 14 3 (- B 3D8 (Qk)””

1 1
(2MR)F = 14 My — SR 4 2(ARY? — 2(MRY ..
bt 2 2 8

Likewise, using the power series expansion identity (for 22 < 1)

the denominator of the solution for ¢ can be expanded in powers of Ah
1 1= /2 1

8 16
—_— == —Ah) 4= /\h +3 (,\h) + —(AR)? + —(M)* + ...
3(1_%Ah) 3;:%(3 81 243

In this particular case the principal o-root is had by taking the positive sign in the root
equation. The Taylor series expansion for the principal o-root is then

01:<3+,\h—%(/\h)2+%(m)3— )( + = ,\h+ (,\h) +:—1(,\h)3+...)

L+ AR+ = (,\h) +%(/\h)3+...
Subtracting this from the Taylor series expansion of
1
=14 M+ (,\h) +6(/\h)3+"'
and retaining only the first nonvanishing term, yields the transient error of the method
Ah 1 3
ETA = € — 0'1 = —g(Ah)

(d) There is one spurious root which is had by taking the negative sign in the root equation. The
first two nonvanishing terms in a Taylor series expansion of this spurious root are

02:<1—/\h—|— —(AR)? + .. )( + Ah+ (Ah)+ )

1 1
=—-—=-A+...
3 9 +

4. For the time march method given by

2h
Up41 = Up—1 + _(U;H—l + U; + u;z—l)

3

'(m)! is the product of every other number, e.g., (T)!! =7-5-3-1 =105, and (6)!! =6 -4 -2 = 48.



(a) The A — o relation may be derived in the following manner. Applying the time-marching

scheme to a representative equation of the form (u = 0 in this case)

Cfi—?:Au—l—a

results in the following OAE

2h
Upy1 = Up—1 + ? (Aun—l—l + Ay + Aupg + 30)

and on introducing the difference operator, F. the equation may be written as
2h 2h 2h
[(1— ?/\)E— ?A+ <1—|—?/\) E‘l] u, = [2h]a

The term in square brackets on the LHS is referred to as the characteristic polynomial, P(#),
and the term in square brackets on the RHS is referred to as the particular polynomial, Q(F).

The A — o relation is given by
2h 2h 2h
) [ S p— 1+ =
(1-3) 7 - For (1+ ) =0
Solving for the roots of the characteristic polynomial gives

D) / Ah)?
Elh 1_(3

7= 3
e
Using the series expansions
h\)? h))? hA)4

3 6 24

and
L, 2k 4(hX)?* 8(hA)? N
1 2 3 9 21

yields

o1 =14+h)+ %(h,\)2 + é(hA):*’ +...
Subtracting this from the Taylor series expansion of
M =14 Mh + %(/\h)z + é()\h)?’ ...
and retaining only the first nonvanishing term, yields the transient error of the method

1
ery = e — gy = —E(/\h)?’

Although this wasn’t request, one can note that the spurious root is

1



5. For the predictor-corrector combination

ﬂn—}—l = Uy + hu;

Upp1 = Uy + 0oty + 1+ Bhil,

(a) The transient error can be minimized in the following way. Applying the time-marching scheme

to the representative equation

du
dt

= Au+ ae”t
results in the following equation set
ﬂn-}—l = U, + h (/\un + aei‘h”)
Unt1 = 01U + Qolly + 1+ Sh (’\ﬂn+1 + aeth (n+1))

Introducing the difference operator, F, the equation set may be expressed in matrix form as

F —(1 + Ah) Uy _ h 1hn
—(az +BARE  E-ay u, |~ | npE | %€

The characteristic polynomial equals the determinant of the matrix
P(E) = E (E = (a1 + a2) — (az + )Mk — B(Ah)?)
The nonzero root of this polynomial is
o = (a1 4+ a3) + (ag + B)Ah + B(Ah)?
To minimize the transient error the following should hold

a1 +ay =
as + 8 =
B =

ol =

from which it readily follows that

a1 = g = = —

so that the principal root is
o1 =14+ A+ %(,\h)2

and the transient error is .
ery = —(AR)?
L= £0)
The particular polynomial, Q(E), for the final family u,, (as opposed to the intermediate family
uy,) is given by

v h

1
Q) = de l —L(1+AR)E 1hE ] = ghFEF T AR)

The exact numerical solution to u’ = Au + ae? is then

Q")
P(erh)

U, = 107 + aethn

Th(e"™ + 14 Ah)
eth — 1 — Xh— L(Ah)2

1 n
c1 (1 + \h 4+ 5(,\h)Q) + qethm .



6. The local phase error is defined as

(o)

R(o)

er, = wh — arctan

and the power series expansion for the arctan function for z? < 1 is

oC 1
tanz = Y (—=1)f——
arctanz kZO( ) 1

$2k+1

(a) For the first order Runge-Kutta method the principal o-root is
g1 = 1 + Ah
letting A = iw, the local phase error becomes

er, = wh — arctan (wh)

1 1
wh — [wh — =(wh)* + —(wh)® — ...
3 5
1
= g(Wh)B
(b) For the second order Runge-Kutta method the principal o-root is
o1 =14+ A+ %(,\h)2

letting A = 1w, the local phase error becomes

er, = wh — arctan (fih)
1
b wh 1 wh 3—|— 1 wh >

= w _ [ — — e —— T e ..

1—3(wh)? 3 \1-4(wh)? 5\ 1— J(wh)?
3 5

oC (wh)2k+1 1 o (wh)2k+1 1 oC (wh)2k+1

= wh - ZT_g ZT +g ZT T

= wh — (wh—l— 5 + 1 —|—...)—%((wh)B—}—(wh)S—l-...)+%((wh)5—|—...)—...]

1
= wh — |wh + E(wh)?’ + %(wh)5 — ]
1

(c) The first order method has a positive phase error, so it lags. Conversely, the second order
method has a negative phase error, so it leads.

% main.m
% Assignment 4 Problem 2, AE296 Spring 1995 Due March 13, 1995
A= [-10, -.1, -.1; 1, -1, 1; 10, 1, -1];



f=1[-100];
uo = [1 1 1]°;
uexact = A\(-f);

h = input(’Enter time step = ’);
N = input(’Enter Number of time steps = ’);
Lam = eig(Aa)

sigl = max(abs(ones(3,1) + h*Lam));
sig2 = max(abs(ones(3,1)./(ones(3,1) - h*Lam)));
sig3 = max(abs(ones(3,1) + h*Lam + O.5%h*h*Lam.*Lam)) ;

sigl
sig2
sig3

uexp = u0;
uimp = u0;

upc = u0;

ue2 = zeros(N,1);
ui2 = zeros(N,1);
up2 = zeros(N,1);

t = zeros(N,1);

for n = 1:N
uexp = Euler_explicit(A,uexp,f,h);
uimp = Euler_implicit(A,uimp,f,h);

upc = Predict_Correct(A,upc,f,h);

ue2(n)

uexp(2);
ui2(n) = uimp(2);
up2(n) = upc(2);
t(n) = n*h;

end

figure(1);

clf;
subplot(3,1,1);
plot(t,ue2,’r’);
subplot(3,1,2);
plot(t,ui2,’r’);
subplot(3,1,3);
plot(t,up2,’r’);

diffe
diffi
diffp

uexp - uexact
uimp - uexact
upc - uexact



end

NN A A A YA Y A YA A AN A YA AN AN
hEuler_explicit.m

function u = Euler_explicit(A,un,f,h)
up = uprime(A,un,f);

u = un + h*up;

end

AN A A A Y Y Y YA AN AN A YA AN AN
AEuler_implicit.m

function u = Euler_implicit(A,un,f,h)
up = uprime(A,un,f);

r = h*up;
u = un + (eye(3) - h*A)\r;
end

AN AN A AN AN AN AN A YA A
%Predict_Correct.m

function u = Predict_Correct(A,un,f,h)
up = uprime(A,un,f);

ut = un + h*up;

upp = uprime(A,ut,f);

u = un + 0.5*h*(upp+up);

end

Yy NN Y Y Y Y Y A Y Y N Y Y A Y Y YA YA
huprime.m

function uprime = uprime(A,u,f)
uprime = Axu + f;

end



